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Abstract

In this project, I used various numerical techniques to investigate the ex-

istence of nonlinear, spatially localized modes for vibrational and magnetic

lattices. I started by using Newton-Raphson algorithm to solve the well-known

1-D Fermi-Pasta-Ulam (FPU) lattice for nonlinear, stable and localized solu-

tions, also known as intrinsic localized modes (ILMs). Using this approach, I

found lattice ILMs at the nonlinear frequency just above the minimum nonlin-

ear threshold, then input them into Newton-Raphson to obtain more solutions

at higher frequencies via continuation. I then evolved these solutions in time

with Runge-Kutta (RK4) algorithm to evaluate their stability.

Afterwards, I turned to the 1-D ferromagnetic and antiferromagnetic lat-

tices, and tried a similar approach to the FPU lattice. Due to the huge in-

crease in complexity of the magnetic lattices and possibly other complications,

the Newton-Raphson algorithm failed to converge even when backtracking line

search and trust-region constraint variations were implemented. Thus I used

the shooting method to solve for ILMs in the lattice, and successfully found

ILMs in the antiferromagnetic lattice. Afterwards, I also explored both the

formation of nontrivial localized modes in 1-D and 2-D ferromagnetic lattice

from small perturbations from the uniform mode and their long term stability.
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1 Introduction

Linear systems and linearization of nonlinear systems are well-studied in physics, due

to the simplicity and predictability of the problem. However, the majority of systems

in nature are nonlinear, and thus warrant close investigations despite their complex-

ity. One such problem that has been gaining attention in condensed matter physics

is the dynamics of intrinsic localized modes (ILMs) in perfect lattices (in contrast

to stable localized modes in lattices with defects). An ILM is a stable oscillatory

localization of a lattice, as opposed to a plane wave/normal mode in which the lattice

energy is spread out evenly on each lattice site. An example of an ILM can be seen in

Fig. 1. In this thesis, I will use various numerical analysis techniques to investigate

ILM behaviors in a vibrational Fermi-Pasta-Ulam (FPU) lattice and magnetic lattices

(antiferromagnetic and ferromagnetic).

Figure 1: (a) Plane wave mode and (b) localized mode for an antiferromagnetic lattice

in the xy-plane. The position of each vector represents the spin’s actual position in

the 1-D lattice, while the length represents the xy projection of the 3-D spin. Note

that the dots in (b) are spins that are aligned with the z-axis (out of the page). All

the energy in the (b) lattice is concentrated in the middle.

The process is as follow: I start with differential equations that describe the dy-

namics of the system in question (e.g. mẍ = −kx), then use ansatzs, approximations,

etc. to reduce the differential equations to a system of algebraic equations. The roots
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to these algebraic equations are configurations that are exact numerical solutions (or

solutions obtained numerically that are close enough to the real solution), and thus

are stable oscillatory modes for this system. For this purpose, I can use root finding

algorithms such as Newton-Raphson [1] in order to look for ILM solutions to the sys-

tem at oscillation frequencies where the nonlinearity of the lattice begins to manifest.

After finding one solution, I can use it as input to Newton-Raphson to find more

energetic solutions at higher frequencies. Then, I use RK4 to evaluate the solution’s

stability over time. All the above algorithms are implemented using Python, mainly

with an IPython (in particular Jupyter Notebook) environment due to its extreme

versatility, ease of use and the nature of the project as a test trial for the numerical

process.

The above process doesn’t specify a particular lattice; indeed, ILMs have great

genericity and can appear in many perfect lattice [6–10], as long as the dynamical

equations for lattice is nonlinear and the lattice is discrete. The lattice’s discrete

structure induces a nonlinear region above the dispersion curve at the Brillouin zone

boundary [2]. The lattice nonlinearity gives rise to a relationship between the oscilla-

tion frequency and amplitude, which allows the lattice frequency to move to nonlinear

regions. Together, the two conditions satisfy the ILM existence criterion: the frequen-

cies at which it is possible to observe ILMs must avoid all linear frequencies on the

plane wave spectrum.

In this thesis, I will look for ILMs in the 1-D version of the FPU lattice [15] and

magnetic lattices and begin to extend this to 2-D. The FPU lattice is a 1-D analog

of atoms in a 1-D crystal lattice, in which the atoms are linked by nonlinear springs,

given by the addition of a nonlinear quartic term in the lattice potential. This prob-

lem is similar to that of multiple coupled spring-mass system, but instead of a normal

linear spring, I use nonlinear springs that change their hardness with amplitude. The

FPU lattice is relatively simple, and in a way serves as a proof-of-concept for the

application of my numerical routine to the magnetic lattices.

The magnetic lattices represents an ionic crystal lattice, are emulated by a varia-

tion of the classical Heisenberg model [17]. There are two types of magnetic lattices:

ferromagnetic, where neighboring spins tend to align and produce a net magnetic

field; and antiferromagnetic, where neighboring spins tend to antialign and produce

a net zero magnetic field. The Heisenberg exchange term represents this interaction.

Furthermore, classically a dipole under a magnetic field undergoes precession about
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the direction of the applied magnetic field. Here, the dipoles are valence electrons

of the lattice ions and the magnetic field is directed along the lattice’s intrinsic easy

axis (an axis with which magnetic spins tend to align), in this case the z-axis. This

interaction is represented by the intrinsic anisotropy term, and is essential to the exis-

tence of ILM in the magnetic lattice. I will also investigate the spontaneous formation

of localized modes due to perturbation to an eigenstate of the magnetic lattice, in

order to get a closer look at the effect of the lattice’s nonlinearity in terms of energy

distribution in the system.
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2 Theory

2.1 ILMs

In a pure lattice, vibrational phenomena are often linear/planar in nature due to their

periodicity and linearity according to the Bloch theorem [2]. With the introduction

of defects such as impurities [3], the loss of symmetry gives rise to oscillatory local-

izations. However, it was theoretically shown that localized modes can be observed

in a very simple nonlinear [4] and discrete lattice [5]. These intrinsic localized modes

(ILMs), also known as discrete breathers, are stable oscillatory spatial localizations

in a lattice maintained by nonlinear vibration phenomenon. Their stability means

ILMs are exact solutions (with special properties, such as translational asymmetry)

to the system’s equations of motion. ILMs are very generic, and have been found

across a variety of lattices including photonic crystals [6], atomic lattices [7] and

anti-ferromagnets [8], as well as macroscopic lattices such as electrical transmission

lines [9] and pendulum chains [10]. They can exist if the lattice’s dynamical differen-

tial equations are nonlinear enough to initiate energy localizations, and if the lattice

is discrete enough to stabilize that mode.

Nonlinearity

For a linear lattice, such as a simple harmonic coupled mass-spring system, the fre-

quencies of the plane wave modes (or linear modes) are independent of oscillation

amplitudes (e.g. ω for a simple harmonic oscillator). In a ’hard’ nonlinear system,

these frequency values increase with amplitudes, while the opposite is true for ’soft’

ones [3]. One can think of these two cases as a hard spring that gets stronger the

longer it is pulled, and a soft spring that gets weaker the longer it is pulled. Thus

by changing the oscillation amplitudes, we can shift the frequency relative to the

system’s linear dispersion curve.

Discreteness

But nonlinearity alone is not enough to entice the lattice to redistribute its normal

mode energy. The frequency of the lattice can shift around, but if there exists a

wavenumber k for every ω (as is the case for a wave in a continuous medium [11]),

the system will always find a stable plane wave mode regardless of frequency. This

is where the discreteness of the lattice comes in, and its role is best demonstrated by

an example.
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Consider a linear coupled mass-spring system with N masses, lattice spacing a,

spring constant c and equations of motion

mẍn = c(xn+1 − xn)− c(xn − xn−1), (1)

for n = 1, 2, . . . , N . Plugging in a plane wave ansatz of the form xn(t) = Ane
i(kna+ωt)

where k is the wavenumber and ω is the wave frequency, we get ω2 = 2c/m[1−cos(ka)]

and consequently the dispersion relation

ω(k) = 2

√
c

m

∣∣∣∣sin(ka2
)∣∣∣∣ . (2)

We see that ω(k) = ω(k + 2π/a), so ω(k) is periodic with a period of 2π/a. Thus

an interval of, for example, −π/a ≤ k ≤ π/a completely characterizes all plane wave

solutions of the lattice, and is also called the first Brillouin zone [2]. In fact, as shown

in Fig. 2, we can see that the Brillouin zone is generic to all discrete lattices, and not

just this specific example of a coupled mass spring system. Since ω in a discrete lattice

is periodic and differentiable (no funny infinities!), the dispersion relation is bounded

by a maximum frequency as seen in Fig. 3. Above this cutoff frequency, there are no

plane wave normal modes for the system, which is exactly where we should be looking

for interesting behaviors as the lattice now no longer has a well-defined wavenumber.

Figure 2: Demonstration of the degeneracy of information outside of the first Brillouin

zone. Although the underlying waves are different, as far as the discrete lattice is

concerned there is no difference between waves with k = π/a and k = 3π/a because

every lattice site is located at a node of both waves.
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Figure 3: Dispersion relation/plane wave spectrum for a (a) hard nonlinear system

(FPU) and a (b) soft nonlinear system (antiferromagnet). Note the gap above k = π/a

at the zone boundary for (a), and the gap below k = 0 for (b). These are the regions

with frequencies that can sustain ILMs.
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ILM existence criterion

In this section, I will explore a hard nonlinear system (the same logic applies for a

soft nonlinear system). As we recall, the lattice’s nonlinearity gives its frequencies an

amplitude dependence, and its discreteness breaks the monotonicity of the lattice’s

dispersion curve and introduces a gap above the plane-wave spectrum (as seen in Fig.

3(a)). Thus we can manipulate the system’s frequency either by increasing or decreas-

ing the oscillation amplitude. Nonlinear systems, however, approach linear systems

at low amplitude limits as they can now be approximated by a first order Taylor

approximation, and will not display interesting nonlinear behaviors. Consequently,

in order to observe nonlinear behaviors, we have to increase the lattice oscillation

amplitude.

For a hard nonlinear system, increasing the amplitude raises the frequency, and

eventually near the top of the band/spectrum, the plane wave mode starts to destabi-

lize and localize, initially forming a wide ILM with slightly higher amplitude than the

plane wave mode at the top of the band. We can see that the lattice energy has been

redistributed and localized on the ILM [3]. In order for ILMs to exist, the oscillatory

frequencies at which it is possible to observe ILMs have to avoid the linear modes

on the plane-wave spectrum [12]. For the lattice in question, its discreteness induces

the nonlinear region of the dispersion relation, while its nonlinearity helps the lattice

frequency breaks free from the band and enter the nonlinear regime by introducing

the amplitude dependence.

For a soft nonlinear system, increasing the oscillation amplitude decreases the

frequency. Thus, it is impossible for a soft system to avoid the plane wave spectrum

unless there is a nonlinear gap under the plane wave spectrum for the frequency to

descend into. This can be the case when the particle is excited enough to be in

the optical band of a diatomic system [2], or when the lattice Hamiltonian admits

an onsite energy term. An onsite energy term gives every lattice site an energy term

(e.g. gravity) that’s independent of other nearby sites, and is also the component that

allows the soft magnetic lattice that we will investigate to display ILM behaviors.
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2.2 Algorithms

2.2.1 Newton-Raphson

Newton-Raphson is one the most basic, popular, and still rather powerful root finding

algorithms. To begin, I will describe the general idea of Newton-Raphson in 1-D then

extend it to multiple dimension. Consider a point xi and an objective function f(x)

whose root we want to find. Recall the Taylor series expansion of a function around

a point

f(xi + δ) = f(xi) + f ′(xi)δ +
f ′′(xi)

2
δ2 + · · · (3)

Within a small enough δ neighborhood of x, we can ignore higher order terms and

obtain the linearization f(xi + δ) ≈ f(xi) + f ′(xi)δ. If f ′(xi) 6= 0, the tangent line

f(xi) + f ′(xi)δ passes the x-axis at some point. Let (xi+1, 0) be this intersection for

xi+1 = xi + δ; then we have

f(xi) + f ′(xi)(xi+1 − xi) = 0, (4)

or in a more suggestive way,

xi+1 = xi −
f(xi)

f ′(xi)
. (5)

Figure 4: Illustration of the Newton-Raphson algorithm. The algorithm approaches

the root with every iteration in this scenario. Adapted from Applied Numerical Meth-

ods with MATLAB by S. Chapra (2018)
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Equation (5) is an iterative function: given a guess for the root x0, we can follow

the tangent line at this point to the x-axis for the next point x1, then repeat the

process to find x2, x3, . . . Our eventual goal is to compute numerically a value c that

is the true root of the function such that f(c) = 0. Equation 3 also highlights the

importance of picking a beginning guess x0 close enough to the true root: since every

iteration we hope that the successive point xi + δ would be c, if the initial guess x0

was far away from c, the higher order terms in the Taylor expansion can no longer

be ignored, and we cannot guarantee a straight route from x0 to c e.g. there might

exist a local minimum or maximum between x0 and c. If the next iteration returns

an x1 close to this point, the slope is approximately 0 and the algorithm shoots off

into the wild blue yonder. Of course, how close is ’close enough’ entirely depends on

the function we are dealing with: the less complicated and more convex the function

is, the further x0 can go without the algorithm failing.

Figure 5: Two examples of Newton-Raphson failing to converge when the initial guess

is not sufficiently close to the root. Adapted from Applied Numerical Methods with

MATLAB by S. Chapra (2018)

Newton-Raphson is also easily generalizable to multiple dimensions. Given a

system of N equations represented by the vector F(x) where F = (F1(x), . . . , FN(x))

9



and x = (x1, . . . , xN), we would like to find a root c such that F(c) = 0. Similar

to the 1-D version, performing a multidimensional Taylor approximation yields an

expression similar to Eq. (4)

F(xi) + J · (xi+1 − xi) = 0, (6)

where J is the Jacobian matrix of F, defined as

J =


∂

∂x1
F1

∂
∂x2
F1 . . . ∂

∂xN
F1

∂
∂x1
F2

∂
∂x2
F2 . . . ∂

∂xN
F2

...
...

. . .
...

∂
∂x1
FN

∂
∂x2
FN . . . ∂

∂xN
FN



Newton-Raphson has a variety of benefits and drawbacks. The main attraction of

Newton is that the algorithm converges quadratically for a simple root (nonzero slope

at root), which means the number of significant digits doubles with every iteration [1].

This places Newton-Raphson in the upper echelon of fast numerical algorithms, and

makes it the algorithm of choice for functions with efficient derivatives that are con-

tinuous and nonzero near the root. The drawbacks of Newton-Raphson is the need

for an efficient derivative of the function, and the above problem of the algorithm

possibly not being able to converge if the initial guess x0 is too far away from the

true root. If the derivative or Jacobian is inconvenient or expensive to evaluate, it

can be approximated using finite-difference method [14]. However, this additional

approximation makes Newton-Raphson slower than many of its variations, and thus

should be used with care.

Considering all these points, I chose Newton-Raphson for this project since the

Jacobian matrix can be analytically derived from the lattice’s algebraic system of

equations (recall that these equations are obtained with ansatzs and approximations

from the system’s dynamical equations). Furthermore, practically every root finding

algorithm requires a ’close enough’ guess, thus we are not compromising in that

respect. Moreover, the convergence radius of Newton-Raphson can be improved in a

variety of ways, the most common of which are backtracking line search [14] and trust-

region constraint [14]. In both cases, the algorithms minimize a proxy function, the

minimum of which is the root of the objective function. Finding minima is relatively

easy compared to root finding. The backtracking line search algorithm adjusts the

Newton-Raphson step size for every iteration to ensure that the algorithm stays on

10



track. The trust-region constraint algorithm does the opposite: it first chooses a step

size, then maps out a trust-region in function space, then moves in the direction of

the best model to the proxy function in that region.

2.2.2 RK4

Given an initial state x0 and an ordinary differential equation x′(x, t) describing the

time evolution of a physical system, we often would like to investigate the dynamics

of such system at some point in the future. This is known as an initial value problem,

and the go-to numerical routine for this problem is Runge-Kutta, also known as RK4

(since the 4th order of the algorithm is standard). A more primitive version of RK4

is the Euler method, in which the state of the system at a point xi+1 = x(ti + ∆t) is

extrapolated using the derivative x′(xi, ti) at xi = x(ti) and a step size ∆t using the

formula

xi+1 = xi + x′(xi, ti)∆t. (7)

The Euler method is not very accurate compared to more advanced algorithms nor

is it stable; therefore, it is not fit for practical use. However the method provides a

good starting point for an intuitive understanding of initial value algorithms. Similar

to the Euler method, RK4 also approximates xi+1 using the derivative at xi, but also

utilizes various derivatives at the midpoint ti + ∆t/2 and endpoint ti + ∆t to provide

a better approximation. The formula for RK4 reads

k1 = x′(xi, ti)∆t

k2 = x′
(
xi +

k1

2
, ti +

∆t

2

)
∆t

k3 = x′
(
xi +

k2

2
, ti +

∆t

2

)
∆t

k4 = x′(xi + k3, ti + ∆t)∆t

xi+1 = xi +
1

2
(k1 + 2k2 + 2k3 + k4).

(8)

where kn/∆t (unrelated to the wavenumber) represents the slope evaluated during the

algorithm at various x and t values. I will now refer to kn’s as ’slopes’ for simplicity.

Intuitively, we start by evaluating the slope k1 at (xi, ti), then follow this slope to the

point (xi +k1/2, ti +∆t/2) and evaluate the slope k2. We then start over from xi then

follow k2 to evaluate the slope k3 at (xi + k2/2, ti + ∆t/2). Then we follow k3 from xi

to evaluate slope k4 at (xi + k3, ti + ∆t). The true estimate of xi+1 is then computed

using a weighted average of the four slopes k1, k2, k3 and k4. A visual demonstration

of the algorithm is shown in Fig. 6. Although the algorithm looks expensive, RK4’s
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error term is of 5th order, which is minuscule compared to Euler’s first order error.

Thus RK4 can use a much larger time step ∆t compared to Euler, and can therefore

propagate the system much faster in time.

Figure 6: Illustration of the RK4 algorithm. The final slope Φ is computed by taking

a weighted average of kn’s. Adapted from Applied Numerical Methods with MATLAB

by S. Chapra (2018)

The above algorithm is used to solve a system of first order ODEs. As we will see,

the FPU lattice is described by a system of second order ODEs, and RK4 will have

to be slightly modified to accommodate this. We start by splitting each second-order

ODE x′′(x′, x, t) into two coupled first order ODEsx′(y, x, t) = y(x, t)

y′(y, x, t) = x′′(y, x, t)
(9)

with initial boundary values xi and yi. The RK4 algorithm can then be performed

normally, but since the two ODEs are coupled, the slope computations are interlinked:

12



k1 = x′(yi, xi, ti)∆t

l1 = y′(yi, xi, ti)∆t

k2 = x′
(
yi +

l1
2
, xi +

k1

2
, ti +

∆t

2

)
∆t

l2 = y′
(
yi +

l1
2
, xi +

k1

2
, ti +

∆t

2

)
∆t

k3 = x′
(
yi +

l1
2
, xi +

k1

2
, ti +

∆t

2

)
∆t

l3 = y′
(
yi +

l1
2
, xi +

k1

2
, ti +

∆t

2

)
∆t

k4 = x′(yi + l3, xi + k3, ti + ∆t)∆t

l4 = y′(yi + l3, xi + k3, ti + ∆t)∆t

xi+1 = xi +
1

2
(k1 + 2k2 + 2k3 + k4)

yi+1 = yi +
1

2
(l1 + 2l2 + 2l3 + l4).

(10)

This gives the points xi+1 and yi+1 that we can use to compute the next iteration.
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2.3 Lattices

2.3.1 Fermi-Pasta-Ulam

The FPU lattice is described by the following equations [15]

ẍn = (xn+1 − 2xn + xn−1) + β
[
(xn+1 − xn)3 − (xn − xn−1)3

]
(11)

where xn is the displacement at the nth site where n = 1, 2, . . . , N for a lattice of

size N , and β is the nonlinear coefficient. The behaviors at the endpoints x1 and xN

depend on the choice of boundary: the lattice can either have fixed boundary, where

the endpoints are only coupled to nearby sites, or periodic boundary where the end-

points are also coupled to one another, essentially ’looping’ the lattice around. These

equations have been non-dimensionalized so that the mass m and spring constant c

both equal 1 for simplicity. Without the nonlinear term, the system would be identi-

cal to a nearest-neighbor simple harmonic coupled mass-spring system as seen in Eq.

(1). This additional term necessary to supply the anharmonicity needed to display

ILM behavior. The lattice can be thought of as a model describing the vibrational

dynamics of a perfect crystal, where each mass is a lattice atom.

Recall that ILMs are exact solutions to a lattice’s equations of motion, in this case

Eq. (11). However, for most nonlinear differential equations, solving them analytically

is impossible. Thus we can start with an approximation of the true solution, then

let a numerical root finding algorithm (in this case Newton-Raphson) do the rest

of the work to get the numerically exact solution. We consider the FPU lattice at

low amplitudes. Here, the effects of the nonlinear term on the lattice dynamics is

minimal, and the lattice is approximately a linear coupled mass-spring system. We

can therefore use the ansatz xn(t) = An cosωt, where An is the oscillation amplitude

for each lattice atom, and ω is the vibrational frequency for the lattice. Note that

since the solution has to be stable in time, the ansatz forces all sites to oscillate in

phase, but allows them to have different amplitudes. Plugging this into Eq. 11 we

have:

−Anω
2 cosωt = (An+1−2An+An−1) cosωt+β

[
(An+1 − An)3 − (An − An−1)3

]
cos3 ωt.

(12)

Here we introduce another approximation. Since the lattice is in the low amplitude

limit, it is almost linear and oscillates at a frequency of ω by assumption. Thus terms

that oscillate at much higher frequencies in cos3 ωt = 1
4
(3 cosωt + cos 3ωt) can be
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safely ignored. This is known as the rotating wave approximation [16], and the result

is cos3 ωt ≈ 3
4

cosωt. With this approximation, Eq. (12) becomes:

(An+1 − 2An + An−1) +
3

4
β
[
(An+1 − An)3 − (An − An−1)3

]
+ Anω

2 = 0. (13)

Finally, recall that Newton-Raphson requires the Jacobian matrix of the system of

equations. The Jacobian can be approximated using a finite-difference method [14],

but in this case we can solve for the Jacobian in closed form, which results in a faster

algorithm. From Sect. 2.2.1, let the right hand side of Eq. (13) be fn, then the

Jacobian matrix of the FPU lattice has the form

J =



∂A1f1 ∂A2f1 . . . ∂AN
f1

∂A1f2 ∂A2f2 ∂A3f2 . . .

∂A2f3 ∂A3f3 ∂A4f3 . . .

∂A3f4 ∂A4f4 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂A1fN . . . ∂AN−1
fN ∂AN

fN


where

∂Ai
fj =


0 |i− j| > 1

1 + 9
4
β(Ai − Aj)

2 |i− j| = 1

−2− 9
4
β[(Aj+1 − Aj)

2 + (Aj − Aj−1)2] + ω2 i = j

(14)

Since the FPU lattice in this thesis only considers nearest-neighbor interactions, the

Jacobian is rather sparse with (partial) tridiagonal symmetry. However, note the

special cases of ∂xN
f1 and ∂x1fN . In the Jacobian matrix above, these two terms

are nonzero since we’re considering periodic boundary conditions, which means the

endpoints of the lattice are coupled together. If this is not the case, those two terms

would each take on a value of 0.

Now we have a system ofN equations andN+1 unknowns from Eq. (13), including

all An’s and ω. For every ω there exists a different set of coefficient An’s, and by the

ILM existence criterion, only frequencies that are not on the plane wave spectrum can

return ILMs. To find the approximate dispersion curve for the linearization of the

lattice, note that for a plane wave mode, we can safely ignore the nonlinear term in

the equation of motion. Then the equation of motion becomes ẍn = xn+1−2xn+xn−1,

which is similar to the example we solved in Sec. 2.1. Again, consider a wave
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ansatz xn(t) = Aei(kna+ωt), where a is the lattice spacing constant. Then we have

xn±1 = xne
±ika, and plugging this into the equations of motion gives

ω(k) = 2

∣∣∣∣sin(ka2
)∣∣∣∣ . (15)

as shown in Fig. 7. At the zone boundary, we find ω(π/a) = 2 which is also where

the plane wave modes start to destabilize. Then to begin, we can start finding roots

for Eq. (13) with frequencies slightly larger than 2, for example ω = 2.1. Since this

frequency is only slightly above the linear spectrum, the FPU lattice can be solved

with the rotating wave approximation without significant loss in accuracy.

Figure 7: Dispersion relation for the FPU lattice. Since the FPU lattice has hard

nonlinearity, increasing the peak amplitude of the system allows the frequency ω to

rise above the plane wave spectrum at k = π/a.

2.3.2 Magnetic

The time evolution of a magnetic lattice is described by [17]

dSn

dt
= Sn ×Heff

n (16)

where Sn is the magnetic moment (for this lattice an atom’s valence electron spin) at

site n and Heff
n is the effective magnetic field at site n, represented as

Heff
n = 2J(Sn−1 + Sn+1) + 2DSz

nẑ. (17)

This is the effective magnetic field for a variation of the Heisenberg model of a 1-D

nearest-neighbor magnetic lattice, where J is the spin coupling constant and D is the
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lattice anisotropy (read: direction dependent) coefficient. Similar to the FPU lattice,

this equation has been non-dimensionalized (i.e. using units where h̄, γ, . . . = 1) for

simplicity. The model is actually defined by its Hamiltonian, from which the effective

field is obtained by Heff
n = −∇SnH = −

∑N
n=1(∂H/∂Sn)Ŝn, with

H = −2J
∑
n

Sn · Sn+1 −D
∑
n

(Sz
n)2. (18)

In both Eq. (17) and Eq. (18), the first term is called the Heisenberg exchange

term, which describes interactions between nearest-neighbor lattice sites, and the

other term is the easy axis anisotropy term which describes the interaction that only

depends on the current site. The Hamiltonian of a system almost always represent

the total energy, and a system tends to minimize its energy. Thus, we can see that

the sign of J signifies whether the lattice is ferromagnetic (aligned neighboring spins)

or antiferromagnetic (anti-aligned neighboring spins). If J is positive, Sn will tend

to align with Sn+1 to minimize the overall exchange term and vice versa. Meanwhile,

the anisotropy term is minimized if the dipole/spin is aligned with the anisotropy

direction (also called the easy axis), in this case the z-axis. The easy axis is responsi-

ble for a gap under the plane wave spectrum on the soft nonlinear magnetic lattice’s

dispersion curve, and by proxy the lattice’s ability to display ILM behaviors.

The anisotropy term describes the interaction associated with a magnetic lattice’s

easy axis, which is a line through the lattice that is energetically favorable for sponta-

neous magnetization. From classical electrodynamics, a dipole µ in a magnetic field

B with direction Ŝ 6= ±B̂ experiences a torque τ = µ×B, and will start precessing in

the clockwise direction around the direction of the field. In fact, this would be exactly

the same as Eq. (16) if the effective magnetic field Heff
n did not have the Heisenberg

exchange term - if the lattice dipoles don’t interact with each other at all.

Consider the uniform mode in a ferromagnetic lattice, in which all spins are dis-

placed from the z-axis by the same amount, and are all in phase as seen in Fig. 8.

The wavenumber of this setup is k = 0, and without the anisotropy term, nothing

would happen since all lattice spins would align with its neighboring spins’ current

direction, which is the same for all spins and is also the net magnetization of the

lattice. For an antiferromagnetic lattice, there would be no net magnetization and

thus also no movement. In both cases, since the spin is not precessing, the lattice’s

oscillation frequency is ω = 0 and we have no band gap. However, with the anisotropy

term, all lattice spins would experience a torque and will start to precess, giving rise

to a nonzero frequency ω. And since all spins precess in unison, k = 0 and we have
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a gap underneath the plane wave spectrum, as can be seen in Fig. 9.

Figure 8: Uniform mode for a ferromagnetic lattice. All spins are initiated in the

same position and phase, and precess clockwise about the easy axis in an uniform

manner with identical frequency and coordinate amplitudes for all time.

Similar to the FPU lattice, we attempt to simplify Eq. (16) into an algebraic sys-

tem of equations that can be solved numerically. Recall that a dipole under a magnetic

field will precess in the clockwise direction around the magnetic field direction. Thus

we consider the ansatz

Sn(t) = (sn cosωt)x̂− (sn sinωt)ŷ + (
√

1− s2
n)ẑ

for the ferromagnetic lattice and

Sn(t) = (sn cosωt)x̂− (sn sinωt)ŷ + (−1)n(
√

1− s2
n)ẑ

for the antiferromagnetic lattice, where −1 ≤ sn ≤ 1 is the projected spin amplitude

on the xy-plane and ω is the precession frequency. From Eqs. (16) and (17) we have

Ferromagnet(√
1− s2

n−1 +
√

1− s2
n+1

)
sn −

(
sn−1 + sn+1 +

D

J
sn

)√
1− s2

n −
ω

2J
sn = 0 (19)

Antiferromagnet

(−1)n
[(√

1− s2
n−1 +

√
1− s2

n+1

)
sn +

(
sn−1 + sn+1 −

D

J
sn

)√
1− s2

n

]
+
ω

2J
sn = 0.

(20)

The Jacobian matrix for the magnetic lattice is structurally similar to the Jaco-

bian of the FPU matrix, but instead with gj as the left hand side of Eqs. (19) and

(20), and the matrix elements are defined as follow
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Ferromagnet

∂sigj =



0 |i− j| > 1

−sj
si√

1− s2
i

−
√

1− s2
j |i− j| = 1(√

1− s2
j−1 +

√
1− s2

j+1

)
+ (sj−1 + sj+1)

sj√
1− s2

j

−D
J

1− 2s2
j√

1− s2
j

− ω

2J

i = j

(21)

Antiferromagnet

∂sigj =



0 |i− j| > 1

(−1)n[−sj
si√

1− s2
i

+
√

1− s2
j ] |i− j| = 1

(−1)n

(√1− s2
j−1 +

√
1− s2

j+1

)
− (sj−1 + sj+1)

sj√
1− s2

j

−D
J

1− 2s2
j√

1− s2
j

+
ω

2J

i = j

(22)

Now we would like to find the cutoff frequency for the nonlinear regime of the

lattice’s dispersion relation. For a ferromagnetic lattice, we can assume the plane wave

solution by setting all sn = s0 for some |s0| < 1. Because the nonlinear frequencies

in magnetic lattices lie below the linear spectrum, we have k = 0. Then a uniform

mode ansatz of the system would be Sn(t) = (s0 cosωt)x̂− (s0 sinωt)ŷ+ (
√

1− s2
0)ẑ.

From Eqs. (16) and (17) we have

dSn

dt
= Sn ×Heff

n = −2Ds0

√
1− s2

0 (sinωt x̂ + cosωt ŷ) .

From the ansatz, dSx/dt = −ωs0 sinωt and dSy/dt = −ωs0 cosωt. In both cases, we

obtain

ω(0) = 2D
√

1− s2
0. (23)

In the low amplitude limits, the system is approximately linear with ω(0) ≈ 2D.

For the purpose of this project, setting D = 1 for simplicity we get ω(0) = 2 and

consequently ω/2J = 1 which is also the threshold at which the plane wave modes

begin to break down.
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For the antiferromagnetic lattice, deriving the dispersion relation is complicated

due to interactions between the anisotropy field and exchange field in the lattice.

Therefore I will not derive the relation here, but the nonlinear threshold frequency is

given in Ref. [17] as

ω(0) = 2J

√(
2− D

J

)2

− 4. (24)

and the full dispersion relation is demonstrated in Fig. 9. Letting D = 1 and J = −1,

we have ω(0) = −2
√

5 and for the purpose of Eq. (19), ω/2J =
√

5. Below this value

lies the nonlinear regime, where we can begin our search for the antiferromagnetic

ILM.

Figure 9: Dispersion relation for the antiferromagnetic lattice. The anisotropy term

is responsible for the gap underneath the plane wave spectrum. Increasing the peak

amplitude of the system lowers the frequency ω to the nonlinear regime at k = 0.
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3 Numerical Setup

For the project, I used Python due to its accessibility and relative simplicity. Al-

though Python’s interpreted nature makes it slower than compiled languages like

C/C++, it is worth trading speed for ease of use since a large amount of this project

is exploring, testing concepts and troubleshooting. To that purpose, I also use the

IPython environment, in particular Jupyter Notebook. The IPython environment

allows me to modularize my script, and as such is incredibly useful for debugging and

testing, as I can simply execute and troubleshoot the section of code that’s currently

being dealt with.

For the simulation itself, I made use of the numerical package numpy [19] and oc-

casionally the scientific computing package scipy [20]. The package numpy is mainly

used for matrix manipulation while scipy is used for numerical routines such as root

finding, Fourier analysis, etc. In particular, scipy includes both Newton-Raphson

and RK4 algorithms, but due to the elaborateness of the package’s algorithm and

the increased complexity of the magnetic lattices, I resorted to using my own ver-

sion of the numerical routines except for when the situation calls for a more robust

implementation of Newton-Raphson. Both packages are optimized for speed and ro-

bustness, and numpy is especially efficient when dealing with matrices compared to

the traditional method of iterating over rows and columns using for loops. Thus a

goal of the project is to utilize numpy as much as possible, as simulating large lattices

can take an extremely long time.

In order to keep the code as simple as possible without losing its flexibility and

readability, I put all related and often used pieces of code (such as functions, al-

gorithms, parameters) into separate Python modules, then import them and use as

needed. As of now, the main modules that I have are RK4.py, which contains the

RK4 algorithms for both first and second degree ODE; lattices.py, which contains

functions that generate various lattice configurations; newton.py, which contains

implementations of Newton-Raphson; and shoot.py, which contains all the pieces

needed for a crude implementation of the shooting method (described later). These

code pieces are meant to be used as needed in an IPython environment, but can also

be implemented in an executable .py file if needed. All codes are available in Ap-

pendix A, and also on GitHub at https://github.com/pband1256.

For the lattices, I employed periodic boundary conditions although fixed boundary

cases are also included in lattices.py. For ILMs in large lattices however, the
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oscillation amplitudes at the boundary are so small that the effects of each type of

boundary on the system and consequently ILM formation is minimal. For localized

modes that form spontaneously from deviation from an eigenstate, this is the most

efficient way to obtain a semi-infinite lattice without long computational time. To

sum neighboring sites, I can simply use a loop and iterate over every row and column,

adding every site with its neighbors. For periodic boundary, I use the index modulo

the lattice size instead of simply using the array index to ensure the lattice ’loops’

around as expected. For fixed boundary conditions, I pad the lattice borders with

zeroes so that the neighbor sum stops at the boundary. However, a lot of computing

time can be cut by summing neighboring sites for the entire lattice at once (regardless

of lattice dimension) using np.roll over each axis except the one containing the actual

spin components, then sum over all such lattices. For fixed boundary, I again have

to pad the lattice border with zeroes, then sum with np.roll similar to the periodic

boundary case. Both cases are illustrated in Fig. 10.

Figure 10: Summing over neighboring sites for a lattice with (a) periodic boundary

and (b) non-periodic boundary. The neighbor sum for all lattice sites can be computed

simultaneously by ’rolling’ the lattice to the left and right by 1 and summing down

the 3 lattices. For (b), padding with zeroes ensures the sum only includes directly

adjacent sites. In 2-D, this can be accomplished by rolling the lattice up, down, left,

right by 1, and so on.

A major part of my computational manipulations within the project is related
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to the magnetic lattice. To begin finding ILMs for the lattice, I attempted to use

the Newton-Raphson method on a 1-D antiferromagnetic lattice of 128 spins with

ω = 0.95
√

5, right below the nonlinear threshold; however, Newton-Raphson was un-

successful. Recall that Eq. (19) contains multiple terms with square roots. To get

closer to the solution, Newton-Raphson takes the fastest descending direction across

solution space, and along the way there are many lattice solutions with at least one

spin sn > 1. Evaluating this solution returns a square root error and stops the al-

gorithm in its track. The added complexity of handling a system of 128 nonlinear

equations exacerbates the problem by making Newton-Raphson go through more so-

lutions before converging.

A large amount of my time with the project was spent on error-proofing the lat-

tice equations, attempting various maneuvers and more robust variations of Newton-

Raphson. This includes Newton with backtracking line search and trust-region con-

straint, the details of which are rather extensive but were briefly discussed in Sect.

2.2.1. For line search bactracking, after a certain point the altered step size shrinks

to the order of 10−16, which suggests that the algorithm has come to a halt in a local

minimum. I used scipy.optimize.minimize(method=’trust-constr’) [20] for the

trust-region constraint method since implementing the algorithm from scratch is very

time consuming. The scipy version takes a long time to converge (upwards of an

hour), but does converge most of the time except for initial conditions with sn values

close to 1. However, the algorithm always converges to the trivial solution where all

sn ≈ 0, and combined with the long computational time, this method is not realisti-

cally feasible.

With the apparent failure of Newton-Raphson, I used the symmetry of the ILM

mode and turned to the shooting method. The shooting method aims to solve two-

point boundary value problems for ODEs, unlike RK4, which solves ODEs with all

boundary conditions at the starting point (initial value problem). Here, we would

like to find the solution to N coupled ODEs given n1 boundary conditions at a point

x1 and N − n1 boundary conditions at another point x2. The boundary conditions

at x1 do not uniquely determine a solution; thus we let the boundary conditions at

x2 be arbitrary free parameters, and modify them (lauching ’shots’) until we reach

a solution that satisfies both boundary conditions. A full-fledged shooting method

seeks to zero the discrepancy between a guessed trajectory and the true trajectory;

however, due to time constraints I have only been able to minimize this discrepancy

manually. Recall that the lattice has N equations and N + 1 unknowns, including
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all sn’s and ω. For the magnetic lattice, the first n1 boundary conditions is only the

peak amplitude s0. Then ω and the spin xy-amplitudes sn’s for n = 0,±1, . . . ,±N
are free parameters. However, since the sn’s are restricted by Eq. (19), only ω can

freely be modified. We also know that a true ILM is localized, meaning it terminates

at the lattice boundary so that s±N = 0. Then we can launch ’shots’ starting from

various values of s0 and ω, until we find a trajectory that gives us the desire localized

boundary conditions s±N = 0. It is also noteworthy that all the discarded trajectories

are still solutions to the system with different free parameters. These solutions might

have multiple localized wave packets, as seen in Fig. (11) instead of one localized

packet similar to an ILM, but they are still stable modes provided that the lattice

boundary conditions are satisfied.

Figure 11: Different trajectories for the shooting method. As ω approaches the

frequency for an ILM with peak amplitude s0 = 0.7, the trajectory goes from (a) to

(b), pushing other energy localizations away until they disappear from the lattice,

which is the desired ILM solution.
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For the even-parity mode, let the middle site be s0 so that we have the symmetry

sn = s−n. Starting with a certain value of s0 and ω, I can solve for s±1, then use

s0 and s±1 to solve for s±2 and so on. Thus, the problem is converted into solving

a single nonlinear equation 64 times in succession instead of solving 128 nonlinear

equations simultaneously, and was easily handled by scipy.optimize.fsolve [20].

This method can also be likened to a 1-D iterated map, where each successive value

represents the amplitude of the next node. Since ω has an amplitude s0 dependence,

every ILM with a certain peak value s0 will have exactly one ω value associated with

it. Thus, I can vary the frequency and go through different solutions of the system

until a certain value returns a localized solution. Due to the limited timeframe of the

project, I have not been able to implement an automated and robust algorithm for

the method and have only been able to find a few ILMs that are rather close together

in terms of ω and s0; nevertheless, the algorithm successfully returned ILM solutions

for the lattice. Similarly, I assume that the odd-parity mode can also be solved by

assuming sn = −s−n.
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4 Results and Analysis

4.1 Fermi-Pasta-Ulam ILM

The two possible ILM solutions to various nonlinear frequencies ω of a FPU lattice

with 20 sites and periodic boundary are shown in Fig. 12. Figure 12(a) shows the

even-parity (Sievers-Takeno mode) and 12(b) shows the odd-parity (Page mode) so-

lution [15]. The y-axis shows the amplitudes An as seen in Eq. (13) (independent of

mass m and spring constant c) and the x-axis denotes the lattice site. Recall in Sec.

2.3.1 that the frequency threshold for ILM formation is at ω = 2. I therefore started

the Newton-Raphson algorithm with ω = 2.1 using two different initial conditions

for the two different solutions. For the even-parity solution, I started with a delta

function at site n = 10, and for the odd parity solution, I added an additional delta

peak at site n = 9 in the opposite direction. In both cases, Newton-Raphson suc-

cessfully converged to the two solutions found at ω = 2.1. Afterwards, I proceeded

to find solutions at higher frequencies iteratively, with the previous solution as initial

guesses for (almost) guaranteed convergence.

Figure 13 shows a plot of absolute amplitude for every lattice site versus frequency

for each solution parity. Each slice of a frequency value on the x-axis is one ILM as

shown in Fig. 12. Here, I plotted the absolute amplitude to reveal trends in the

wave packet; since the scale of the y-axis is exceedingly small, if the axis denoted raw

amplitudes, all intricacies would be swallowed up by sign differences. Furthermore,

I only plotted half of all lattice sites since using absolute amplitudes gives the ILMs

vertical symmetry across the middle site. It’s important to note that site n = 0 in

Fig. 12 corresponds to A1 in Fig. 13 and so on.

Additionally, I also included ILMs for a purely nonlinear system. Investigating

this system is expected to reveal the relationship between nonlinearity and the shape

of the ILM across different frequencies. In reference to Eq. (11), the lattice is now

described as

mẍn = β
[
(xn+1 − xn)3 − (xn − xn−1)3

]
.

From Fig. 12, we can see that as the frequency increases, the wave packet be-

comes more localized with higher peak amplitudes and a sharper packet. This is

also illustrated in Fig. 13. We can see that aside from the middle two amplitudes

A10 and A11, which increase with frequency, all other amplitudes decrease. This is
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expected for the FPU lattice, since the FPU lattice in this thesis is a hard nonlinear

system: increasing the frequency also increases the amplitude, and in turn increases

the nonlinear behaviors of the lattice and drives the lattice away from normal plane

wave behaviors. Figure 14 shows the ILM for an FPU lattice with only nonlinear

behaviors. Comparing the shape of the ILM to that in Fig. 12, we can see that at

higher amplitudes, the nonlinear modes completely dominate the lattice.

Afterwards, I evaluated the stability of the solution via RK4 to ensure that

Newton-Raphson returned an actual ILM, and not just an unstable localized so-

lution that will dissipate over time. The lattice’s time evolution is partly illustrated

in Fig. 15, and I did in fact find that the solution is stable in time. Note that in this

figure, t does not designate time in seconds, and merely signifies the nth time step in

the RK4 algorithm. However, high frequency ILMs break down suddenly after a while

as seen in Fig. 16, which shows the middle site amplitude for the even-parity mode

over time. Figure 16 shows that the ILM is stable for a longer period of time with

a smaller RK4 step and lower frequencies, suggesting that this instability is due to

both numerical approximations and the rotating wave approximations; nevertheless,

the solution is still stable for upwards of over 30 periods, and thus can be considered

a localized eigenstate of the system.
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Figure 12: (a) Even-parity ILM and (b) odd-parity ILM for the FPU lattice. Note

the increasingly sharper and narrower wave packet as frequency increases.
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Figure 13: Graph of amplitude at each site vs frequency for (a) even-parity ILM and

(b) odd-parity ILM, with A1 at the bottom and A11 at the top (overlapping with A10

in (a)). Aside from the amplitudes at the middle sites which increases with frequency,

all other sites have amplitudes that decrease with frequency. This again suggests the

increasing localization of energy in the lattice, represented by a higher peak amplitude

and narrower wave packet.
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Figure 14: (a) Even-parity ILM and (b) odd-parity ILM for an FPU lattice with only

nonlinear interactions. The energy in this lattice is highly localized at all frequencies,

and at high frequencies the pure nonlinear ILM closely resembles that of the normal

FPU lattice.
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Figure 15: Time evolution of the even-parity ILM at ω = 2.1 with RK4. The ILM

solution proves to be very stable. The ILM changes in time only by a phase factor,

without any change to the localization of the wave packet. Note that the figure depicts

the ILM at each successive RK4 time step, rather than time in seconds.

Figure 16: Instability of ILMs over long periods of time due to approximation and

numerical errors. The graphs depict the middle node (n = 10) of the even-parity

ILM with parameters (a) ω = 3.65, ∆t = 0.1s (b) ω = 2.1, ∆t = 0.1s (c) ω = 3.65,

∆t = 0.01s (d) ω = 3.65, ∆t = 0.001s where ∆t is the RK4 time step.
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4.2 Antiferromagnetic ILM

Figure 17: Example of an ILM with nonzero phase.

Figure 17 shows an example of an antiferromagnetic ILM with a nonzero phase,

while Fig. 18 demonstrates two possible ILMs for an antiferromagnetic lattice of 128

spins with periodic boundary and no phase factor. The two ILMs have frequencies

of ω/2J = 2.155 and 2.124, and was obtained using the shooting method. Note that

since sn is the xy-projected amplitude, it is positively correlated to how much the

spin deviates from the easy axis and consequently how much energy the spin has.

Figure 19 illustrates the subtle differences between the two ILMs by showing the

absolute amplitude difference, obtained by subtracting from the absolute amplitudes

|sn| of the ILM associated with s0 = 0.7 the amplitudes |sn| of the ILMs for various

other s0 (consequently ω) values. Observe that the difference at the middle sites is

positive and increases in magnitude as ω increases, which suggests that compared

to ω/2J = 2.124, ILMs of higher frequencies have lower peaks, which agrees with

the soft nonlinearity of the antiferromagnetic lattice. Conversely, the difference at

non-middle sites are negative and also increase in magnitude, which shows that as

frequency increases, the ILM’s non-middle sites increases in magnitude. Both these

results are consistent with theory, in that for a soft nonlinear system such as the

antiferromagnet, frequency should decrease as amplitude increases. Thus the ILM

becomes more localized as its frequency dives deeper into the nonlinear regime, the

opposite of the ILM we had with a hard nonlinear system (FPU lattice).

I then evolved the ILM at s0 = 0.7 in time with RK4 starting at an uniform phase

of 0 with Sx = sn, Sy = 0 and Sz =
√

1− s2
n, and the results are shown in Fig. 20.

The ILM is stable, and we can see from Fig. 20(b) that the xy-projection maintains its

shape, only changing its phase with respect to Sx and Sy and precesses at a constant
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value Sz that depends on the site. Additionally, note that the ILM obtained from the

shooting method with a set frequency ω was input as is into the RK4 algorithm to

evolve in time with no designation of its inherent oscillation frequency. Regardless,

the oscillation frequency was measured to be ω = 4.407, consistent with our values

from the shooting method.
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Figure 18: Even-parity ILM for an antiferromagnetic lattice. In contrast to the FPU

lattice, the wave packet becomes sharper and narrower as frequency decreases.

Figure 19: Difference between absolute amplitudes of ILM associated with s0 = 0.7 vs.

s0 = 0.65 and s0 = 0.6. The positive difference in the middle and negative difference

at other sites also suggest that the wave packet becomes narrower and sharper as

frequency decreases.
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Figure 20: Time evolution of the even-parity antiferromagnetic ILM at s0 = 0.7. The

entire ILM precesses at stable Sz as seen in (b), and oscillates in phase between Sx

and Sy.
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4.3 Ferromagnetic spontaneous localizations

In addition to finding ILMs in the antiferromagnetic lattice, I also investigated the

formation of localized energy patterns and redistribution of energy in a ferromagnetic

lattice. The ferromagnetic lattice was chosen due to the ease of establishing a uni-

form mode in this lattice. Starting with an unstable eigenstate of the lattice (in this

case the uniform mode), I introduce a noise field that excites every spin by a small

amount, as shown in Fig. 21(b). We can see from Fig. 21(a) that the system stays

synchronized for a period of time, then suddenly redistributes energy in the system,

forming localized ’pockets’ of energy. This can be seen from Fig. 21(c), where energy

in the system is localized in certain sites while leaving other sites with much lower

energy than they started out with. We can also see that these localizations, although

not an eigenstate of the system, still stay stable for a long period of time. Recall

from the shooting method that a stable eigenstate of the system can have multiple

localizations. The long term stability of some localized areas suggests that the local

spin configurations around some of these ’pockets’ resemble that of a true eigenmode

of the system. Furthermore, at t = 25 s, note that although the noise field was en-

tirely random, the initial localizations are rather equally spaced. This can suggest

that the nonlinearity of the lattice prefers a certain global wavenumber that drives

the perturbations to the initial localizations as seen in Fig. 21(c)

Furthermore, I also investigate this behavior in a 2-D ferromagnetic lattice of size

50× 50 with periodic boundary conditions and found a similar trend as seen in Fig.

22. Starting with a uniform mode and a minor noise field, we see that the system

stays coherent for a while, then abruptly redistributes energy to form localized areas.

These localizations are also very stable and, for the most part, are confined to certain

locations. However, we also see that they can still move around slightly and merge

unhindered by their boundaries. Also note in Fig. 22 that the spins are aligned

entirely along the +ẑ direction outside of localized areas (yellow) and −ẑ within

localized areas (blue), thus minimizing their energy. This is not the same situation

as Fig. 21, where the spins lie directly in the xy-plane within localized areas. Since

the transition from +1 to −1 spins has to be continuous, the lattice energy is then

forced to be concentrated at the boundary of each localized area.
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Figure 21: Time evolution of an uniform 1-D ferromagnetic with small excitations.

Figure (a) shows the evolution of the entire lattice in time. Figure (b) shows the

initial perturbations to the uniform mode, which in time coalesce into pockets of

energy as seen in (c).
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Figure 22: Time evolution of an uniform 2-D ferromagnetic with small excitations.

At t = 10 s, there is no obvious pattern to the lattice; however, soon after the lattice

abruptly forms localized areas of spins aligned in the opposite direction to the rest of

the lattice in a manner similar to the 1-D lattice.
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5 Conclusion

In this thesis, I have found and examined ILMs in various types of nonlinear and

discrete lattices, namely vibrational and magnetic lattices, using numerical routines.

I successfully utilized Newton-Raphson to find ILMs for the 1-D Fermi-Pasta-Ulam

lattice, and although Newton-Raphson failed to converge properly for the 1-D mag-

netic lattices, I was able to find ILMs for the 1-D antiferromagnetic lattice using the

shooting method. The ILMs found were stable in time, suggesting that the numeri-

cal algorithms returned true ILM eigenmodes of the lattice. Additionally, the ILMs

also exhibit expected behaviors for both a hard nonlinear lattice and a soft nonlinear

lattice.

I also observed spontaneous localizations of energy in 1-D and 2-D ferromagnetic

lattices due to nonlinear interactions. With small initial perturbations to an eigen-

mode of the system, the system evolves and abruptly forms localizations of energy

that stays stable in time. Additionally, for the 2-D system, all the lattice energy is

focused on the boundary of localized areas, shielding the interior of the area from

destabilizing but still allow them to merge with other localized areas unhindered.

Additionally, these localized areas resemble an eigenstate of the system locally, .
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A Appendix

A.1 RK4.py

def RK4(x0, func, h, args=[]):

’’’

RK4 algorithm for first order ODE

x0 = initial state

func = slope function

h = step size

args = functiona arguments

(note: higher dimensional output can be saved with pickle package)

’’’

k1 = h*func(x0,*args)

k2 = h*func(x0 + 0.5*k1,*args)

k3 = h*func(x0 + 0.5*k2,*args)

k4 = h*func(x0 + k3,*args)

return x0 + 1/6*(k1+k4+2*(k3+k2))

def RK4nd(x0, func, h, args=[]):

’’’

RK4 algorithm for second order ODE

x0 = initial state

func = slope function

h = step size

args = functiona arguments

(note: higher dimensional output can be saved with pickle package)

’’’

c1 = x0[1]

k1 = func(x0[0], x0[1],*args)

c2 = x0[1] + h/2*k1

k2 = func(x0[0] + h/2*c1, c2,*args)

c3 = x0[1] + h/2*k2
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k3 = func(x0[0] + h/2*c2, c3,*args)

c4 = x0[1] + h*k3

k4 = func(x0[0] + h*c3, c4,*args)

x = np.array([x0[0] + h/6*(c1 + 2*c2 + 2*c3 + c4), x0[1]

+ h/6*(k1 + 2*k2 + 2*k3 + k4)])

return x

A.2 lattices.py

import numpy as np

def fpu(A, per=True, omega=2.1, beta=1):

’’’

1D FPU lattice

per: True = periodic boundary, False = non-periodic

omega: frequency

beta: nonlinear coefficient

’’’

f = np.array([])

A = np.asarray(A)

n = len(A)

if per == False:

A = np.pad(A, (1, 1), ’constant’)

Aplus1 = np.roll(A, 1, axis=0)

Aminus1 = np.roll(A, -1, axis=0)

f = Aplus1-2*A+Aminus1+0.75*beta*((Aplus1-A)**3-(A-Aminus1)**3)

+omega**2*A

if per == False:

return(f[1:len(f)-1])

return(f)

def Jfpu(A, per=True, omega=2.1, beta=1):

’’’

41



1D FPU lattice Jacobian

per: True = periodic boundary, False = non-periodic

omega: frequency

beta: nonlinear coefficient

’’’

Jf = np.empty([n,n])

A = np.asarray(A)

n = len(A)

if per == False:

A = np.pad(A, (1, 1), ’constant’)

else:

A = np.pad(A, (1, 1), ’wrap’)

for i in range(1, n+1):

row = np.array([])

for j in range(1, n+1):

if j == i:

row = np.append(row, -2-2.25*beta*((A[j+1]-A[j])**2

+(A[j]-A[j-1])**2)+omega**2)

elif j%n == (i-1)%n:

row = np.append(row, 1+2.25*beta*(A[j+1]-A[j])**2)

elif j%n == (i+1)%n:

row = np.append(row, 1+2.25*beta*(A[j]-A[j-1])**2)

else:

row = np.append(row, 0)

Jf[i-1,:] = row

return(Jf)

’’’

Nonlinear only

’’’

def fpu_non(A, per=True, omega=2.1, beta=1):

’’’

1D nonlinear FPU lattice
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per: True = periodic boundary, False = non-periodic

omega: frequency

beta: nonlinear coefficient

’’’

f = np.array([])

A = np.asarray(A)

n = len(A)

if per == False:

A = np.pad(A, (1, 1), ’constant’)

Aplus1 = np.roll(A, 1, axis=0)

Aminus1 = np.roll(A, -1, axis=0)

f = 0.75*beta*((Aplus1-A)**3-(A-Aminus1)**3)+omega**2*A

if per == False:

return(f[1:len(f)-1])

return(f)

def Jfpu_non(A, per=True, omega=2.1, beta=1):

’’’

1D FPU lattice Jacobian

per: True = periodic boundary, False = non-periodic

omega: frequency

beta: nonlinear coefficient

’’’

Jf = np.empty([n,n])

A = np.asarray(A)

n = len(A)

if per == False:

A = np.pad(A, (1, 1), ’constant’)

else:

A = np.pad(A, (1, 1), ’wrap’)
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for i in range(1, n+1):

row = np.array([])

for j in range(1, n+1):

if j == i:

row = np.append(row, -2.25*beta*((A[j+1]-A[j])**2

+(A[j]-A[j-1])**2)+omega**2)

elif j%n == (i-1)%n:

row = np.append(row, 2.25*beta*(A[j+1]-A[j])**2)

elif j%n == (i+1)%n:

row = np.append(row, 2.25*beta*(A[j]-A[j-1])**2)

else:

row = np.append(row, 0)

Jf[i-1,:] = row

return(Jf)

def amag1d(s, omega, per=True, D=1, q=0):

’’’

1D antiferromagnetic lattice

’’’

f = np.array([])

s = np.asarray(s)

n = len(s)

if per == False:

A = np.pad(A, (1, 1), ’constant’)

splus1 = np.roll(s, 1, axis=0)

sminus1 = np.roll(s, -1, axis=0)

ones = np.empty((len(s),))

ones[::2] = 1

ones[1::2] = -1

f = ones*((np.sqrt(1-sminus1**2)+np.sqrt(1-splus1**2))*s

+ ((sminus1+splus1)*np.cos(q)+D*s)*np.sqrt(1-s**2)) - omega*s
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if per == False:

return(f[1:len(f)-1])

return(f)

def Jamag1d(s, omega, per=True, D=1, q=0):

’’’

1D antiferromagnetic lattice Jacobian

’’’

Jf = np.empty([n,n])

s = np.asarray(s)

n = len(s)

if per == False:

s = np.pad(s, (1, 1), ’constant’)

else:

s = np.pad(s, (1, 1), ’wrap’)

for i in range(1, n+1):

row = np.array([])

for j in range(1, n+1):

if j%n == i%n:

row = np.append(row, (-1)**j*((np.sqrt(1-s[j-1]**2)

+np.sqrt(1-s[j+1]**2))+(s[j-1]+s[j+1])*np.cos(q)

*(-s[j]/np.sqrt(1-s[j]**2))

+D*((1-2*s[j]**2)/np.sqrt(1-s[j]**2))) - omega)

elif j%n == (i-1)%n:

row = np.append(row, (-1)**j*(s[j]*(-s[j-1]

/np.sqrt(1-s[j-1]**2)) + np.sqrt(1-s[j]**2)*np.cos(q)))

elif j%n == (i+1)%n:

row = np.append(row, (-1)**j*(s[j]*(-s[j+1]

/np.sqrt(1-s[j+1]**2)) + np.sqrt(1-s[j]**2)*np.cos(q)))

else:

row = np.append(row, 0)

Jf[i-1,:] = row

return(Jf)
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def fmag1d(s, omega, s0=0.7, D=1, q=0):

’’’

1D ferromagnetic lattice

’’’

f = np.array([])

s = np.asarray(s)

n = len(s)

if per == False:

s = np.pad(s, (1, 1), ’constant’)

splus1 = np.roll(s, 1, axis=0)

sminus1 = np.roll(s, -1, axis=0)

f = (np.sqrt(1-sminus1**2)+np.sqrt(1-splus1**2))*s

-((sminus1+splus1)*np.cos(q)+D*s)*np.sqrt(1-s**2) - omega*s

if per == False:

return(f[1:len(f)-1])

return(f)

def Jfmag1d(s, omega, s0=0.7, D=1, q=0):

’’’

1D ferromagnetic lattice Jacobian

’’’

Jf = np.empty([n,n])

s = np.asarray(s)

n = len(s)

if per == False:

s = np.pad(s, (1, 1), ’constant’)

else:

s = np.pad(s, (1, 1), ’wrap’)

for i in range(1, n+1):

row = np.array([])

for j in range(1, n+1):
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if j%n == i%n:

row = np.append(row, (np.sqrt(1-s[j-1]**2)

+np.sqrt(1-s[j+1]**2))+(s[j-1]+s[j+1])*np.cos(q)

*(s[j]/np.sqrt(1-s[j]**2))

- D*((1-2*s[j]**2)/np.sqrt(1-s[j]**2)) - omega)

elif j%n == (i-1)%n:

row = np.append(row, s[j]*(-s[j-1]

/np.sqrt(1-s[j-1]**2)) - np.sqrt(1-s[j]**2)*np.cos(q))

elif j%n == (i+1)%n:

row = np.append(row, s[j]*(-s[j+1]

/np.sqrt(1-s[j+1]**2)) - np.sqrt(1-s[j]**2)*np.cos(q))

else:

row = np.append(row, 0)

Jf[i-1,:] = row

return(Jf)

def magnet(s,J=-1,D=1):

’’’

ODE for a magnet (for RK4)

’’’

f = []

s = np.asarray(s)

n = len(s)

axis = s.ndim-1

def neighbor_sum(s):

sum = s

for i in range(int(s.ndim-1)):

sum += np.roll(s, 1, axis=i)

sum += np.roll(s, -1, axis=i)

return sum

def H(s):

return 2*J*neighbor_sum(s) + 2*D*np.array([0,0,s[..., 2]])

return np.cross(s, H(s))
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A.3 newton.py

import numpy as np

def Newton(f, Jf, x0, args=[], tol=1e-10, maxiter=10000):

’’’

Normal multidimensional Newton-Raphson

f = objective function

Jf = objective function Jacobian

x0 = initial guess

args = function arguments

’’’

i = 0

x = x0

while i < maxiter and np.linalg.norm(f(x,*args)) > tol:

dx = np.linalg.solve(-Jf(x,*args), f(x,*args))

x = x + dx

i += 1

if np.linalg.norm(f(x,*args)) > tol:

print(’Maximum iterations reached without reaching tolerance.

Not converged.’)

return(x)

def Newton_line(func, Jfunc, x, args=[], MAXITS=10000, TOLF=1e-4,

TOLMIN=1e-6, TOLX=1e-7, STPMAX=100):

’’’

Newton using backtracking line search method

func = objective function

Jfunc = objective function Jacobian

x = initial guess

args = function arguments

’’’

x = np.asarray(x)
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n = len(x)

def newf(x):

return 0.5*np.dot(func(x,*args), func(x,*args))

def grad_f(x):

return np.dot(func(x,*args), Jfunc(x,*args))

def lnsrch(func, xold, fold, g, p, stpmax, bounds=0.999999,

ALF=1e-2, TOLX=1e-7, maxiter=10000):

n = len(xold)

check = 0

alam = 1

sum1 = bounds-np.amax(np.abs(xold))

ap = alam*np.amax(np.abs(p))

if sum1 < ap:

p *= sum1/ap

slope = np.dot(g,p)

if slope >= 0:

print(’Warning(1)’)

for i in range(maxiter):

x = xold + alam*p

f = func(x)

if f <= fold + ALF*alam*slope: # Sufficient decrease

print(2, alam)

return (x,f, check)

else: # Backtracking

if alam == 1: # First time

tmplam = -slope/(2*(f-fold-slope))

else: # Subsequent times

rhs1 = f-fold-alam*slope

rhs2 = f2-fold-alam2*slope

a = (rhs1/alam**2 - rhs2/alam2**2) / (alam-alam2)

b = (-alam2*rhs1/alam**2+alam*rhs2/alam2**2)/(alam-alam2)
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if a == 0:

tmplam = -slope/(2.0*b)

else:

disc = b**2-3*a*slope

if disc < 0.0:

tmplam=0.5*alam

elif b <= 0.0:

tmplam=(-b+np.sqrt(disc))/(3*a)

else:

tmplam=-slope/(b+np.sqrt(disc))

if tmplam > 0.5*alam:

tmplam=0.5*alam

alam2=alam

f2 = f;

alam = max(tmplam,0.1*alam)

print(i, alam, tmplam)

return (x,f, check)

fvec = func(x, *args)

fmin = newf(x)

if np.amax(np.abs(fvec)) < 0.01*TOLF: # Test initial guess

check = 0

return x

stpmax = STPMAX*max(np.linalg.norm(x), n)

for its in range(MAXITS):

Jf = Jfunc(x, *args)

gf = grad_f(x)

xold = x

fmin_old = fmin

p = np.linalg.solve(-Jfunc(x,*args), func(x,*args))

x, fmin, check = lnsrch(newf, xold, fmin, gf, p, stpmax)

fvec = func(x, *args)
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print(x)

if np.amax(np.abs(fvec)) < TOLF:

check = 0

return x

print(’Max iter reached.’)

return x

def Newton_constr(F, JF, x0, args=[], bounds=(-np.inf,np.inf),

tol=1e-6, maxiter=10000):

’’’

Newton using trust-region constraint method

Very slow if guess is not closed to solution

F = objective function

JF = objective function Jacobian

x0 = initial guess

args = function arguments

bounds = linear bounds on solution

’’’

i = 0

x = x0

scale = 0.5

c1 = 0.3

def f(x):

return 0.5*np.dot(F(x,*args),F(x,*args))

def grad_f(x):

return np.dot(F(x,*args), JF(x,*args))

if bounds == (-np.inf,np.inf):

const = ()

else:

const = optimize.LinearConstraint(np.identity(len(x)),

bounds[0], bounds[1])
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while i < maxiter and np.linalg.norm(F(x,*args)) > tol:

dx = np.linalg.solve(-JF(x,*args), F(x,*args))

x = optimize.minimize(f, x, method=’trust-constr’,

jac=grad_f, hess=optimize.BFGS(), constraints=const)[’x’]

i += 1

print(x)

if np.linalg.norm(F(x,*args)) > tol:

print(’Maximum iterations reached without reaching tolerance.

Not converged.’)

return(x)

A.4 shoot.py

def spin_init(sl, s0, w, J):

’’’

s0 = peak spin amplitude

sl = s(-1)

w = frequency

J = lattice type (pos=ferromagnet, neg=antiferromagnet)

’’’

return 2*np.sqrt(1-sl**2)*s0-np.sign(J)*(2*sl+s0)*np.sqrt(1-s0**2) - w*s0

def spin(sl, s0, sr, n, w, J):

’’’

s0 = peak spin amplitude

sl = s(-1)

sr = s(+1)

n = index of lattice site

w = frequency

J = lattice type (pos=ferromagnet, neg=antiferromagnet)

’’’

return np.sign(J)**n*((np.sqrt(1-sl**2)+np.sqrt(1-sr**2))*s0

-np.sign(J)*(sl+s0+sr)*np.sqrt(1-s0**2)) - w*s0

def shoot(s0, w1, w2, wn, n, J):

’’’
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Crude implementation of the shooting method

s0 = peak spin amplitude

w1 = starting frequency

w2 = ending frequency

wn = number of frequencies

n = lattice size

J = lattice type (pos=ferromagnet, neg=antiferromagnet)

’’’

lat_complete = []

for w in np.linspace(w1, w2, wn):

print(r’$\omega =$, w)

s1 = optimize.fsolve(spin_init, 0, args=(s0, w, J))

lat = [s0,s1]

for i in range(int(n/2)):

s = optimize.fsolve(spin, 0, args=(lat[-1],lat[-2],i+1,w))

lat.append(ok)

lat = lat[::-1][:-1] + lat

lat_complete.append(lat)

return lat_complete
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