

10

Friends, FriendsOfFriends, and Everyone. Note that the Event-B context in Figure 3.1 does

not have FriendsOfFriends in the constants section. Our current model does not include that

level of visibility yet, as explained in Section 4.

3.1.2. Machine

The machine SocialNetwork sees the context UserAndData. Our machine defines

the following variables: user, data, connection, visible, owner, isVisible,

dataVisible, password, profileData, connections, and friendsData (Figure

3.2). Variables user and data are subsets of carrier sets USER and DATA representing the

users and data that are actually in the social network. Variable connection is a relation

Figure 3.2: Event-B Machine Variables

 between users to represent friendship in the social network. Variable visible is a

function that maps data to different levels of VISIBILITY. A relation between data and its

owner is defined in owner. Variable dataVisible is a relation between data and user that

indicates which data is visible to which users. Variable password will store the user’s

password as a function from users to STRING. We use the profileData variable to store

data returned by the getUserData event, connections to store connections returned by

11

the getUserConnections event, and friendsData to store data returned by the

getFriendsData event which will be described later in this section.

Invariants

The types of the variables described above are defined by invariants. Additional

invariants are needed to indicate the conditions that must be held true in the model. Some of

the additional invariants are used to express the privacy policies of the social network.

Invariants in the model can be defined “not theorem” (as in Figure 3.3) or “theorem”. If an

invariant is defined as “theorem”, it must be proven using other axioms or invariants defined

in the model. All events in the model must be proven to maintain each invariant that is

defined as “not theorem”.

All the invariants of the model are presented in Figure 3.3. However, it does not have

an invariant that specifies the FriendsOfFriends privacy setting, because the current model

does not include that option. Invariants userType, dataType, connectionType,

visibleType, ownerType, isVisibleType, dataVisibleType, passwordType,

profileDataType, connectionsType, friendsDataType describe data types of the

defined variables. Invariant connectionSymmetry indicates that all the connections in the

social network must be symmetric. That is, if user1 is connected to user2, then user2 must

also be connected to user1. So, for each connection in the social network, we will have two

pairs in the relation defined. Invariants onlyMeVisibility, friendsVisibility, and

everyoneVisibility describe the privacy policies by defining the visibility settings for

each option. Invariant onlyMeVisibility ensures that data set to the visibility option

OnlyMe is only visible to the owner of the data. Invariant friendsVisibility guarantees

that data set to the visibility option Friends is visible to the owner of the data and his friends.

12

Figure 3.3: Invariants of SocialNetwork Machine

If data is set to be visible to Everyone, then everyoneVisibility indicates that it

is visible to all the users in the network. Some additional invariants were defined:

dataVisibleDomain and dataVisibleRange specify explicitly the domain and range

for dataVisible, and ownerDataVisible invariant ensures that the owner will always

be able to see his own content.

Events

The dynamic behavior of the model is defined by its events. One of the first events is

the createUser event, which adds a new user to the social network. This new user will

have one data item that will initially be set to visibility option OnlyMe. We needed to ensure

that our invariants for visibility would still hold true after adding this new user. Action act6

on line 63 in Figure 3.4 adds the following relations to dataVisible: new data d is visible

to the new user u, and all data in the social network that is set to visibility level Everyone is

now also visible to the new user u. This action will guarantee that the invariants

13

onlyMeVisibility and everyoneVisibility on lines 26 and 30 in Figure 3.3 are

satisfied after the execution of this event.

Figure 3.4: createUser event

Another important event is createConnection (Figure 3.5), which takes two users

u1 and u2 and creates a connection between them. Our guards ensure that both u1 and u2 are

in the social network and u1 u2. If the guards are satisfied, two relation pairs (u1 u2) and

(u2 u1) will be added to the connection relation as in act1 on line 64 in Figure 3.5. We

also need to update dataVisible correctly. Thus, act2 in Figure 3.5 sets the data owned by

u1 with visibility of Friends to be visible to u1’s new friend, u2, and vice versa. We do this

by adding the appropriate pairs to the dataVisible relation.

Note that the invariant about the connection relation is required to be symmetric

(connectionSymmetry in Figure 3.3). We chose to model connections between users

based on social networks such as Facebook or LinkedIn where both users must be involved

in the connection upon a connection request is accepted. This is not necessarily true in social

14

media such as Twitter or Instagram where the relationship between users is categorized into

following and followers. Such connections are not required to be symmetric.

Figure 3.5: createConnection event

We also defined events makeVisibleOnlyMe and makeVisibleEveryone to add

the ability to change the content visibility level to OnlyMe or Everyone. These events are

fairly simple because we set data to be visible either to the owner of the data for

Figure 3.6: makeVisibleEveryone and

makeVisibleOnlyMe events

15

makeVisibleOnlyMe or to all users in the network for makeVisibleEveryone.

As in Figure 3.6, we can set the visibility in two ways: either call a function on data

and set it to Everyone (line 75) or override the relation with changing the data’s visibility to

OnlyMe (line 85). Lines 75 and 85 are syntactically different but mathematically equivalent.

Furthermore, whereas in makeVisibleEveryone we need to override the relation

dataVisible with the Cartesian product of data and all users in the network (line 76), in

makeVisibleOnlyMe we only need to override it with one tuple that matches the data to its

owner (line 86).

The makeVisibleFriends event (Figure 3.7) is different from

makeVisibleOnlyMe and makeVisibleEveryone because act2 subtracts data d from

the domain of dataVisible completely and adds the Cartesian product of data d with its

owner

Figure 3.7: makeVisibleFriends event

 and all connections of the owner to the dataVisible relation (line 147 of Figure

3.7), rather than overriding dataVisible. While the makeVisibleOnlyMe and

makeVisibleEveryone events were simple to prove using Rodin’s automated theorem

provers, the makeVisibleFriends event required more work to prove. Using a domain

subtraction in makeVisibleFriends helped the provers discharge the proof obligations

more easily.

16

Figure 3.8: Event getUserData returns all data of a user

Another useful event is getUserData (Figure 3.8) that takes a user as a parameter

and returns all the data that is owned by that user. We also defined the getProfileAs event

that takes two parameters: user u and level of visibility level and returns the data that belongs

to that user with a given visibility level (Figure 3.9). Since Rodin does not have return data

types, we store the data from both events in the profileData variable defined earlier. The

data to be returned in the getProfileAs event will be the intersection of all data that is

owned by user u and all data with the visibility set to level (see line 123 of Figure 3.9).

Figure 3.9: getProfileAs event

There are three events defined for creating a new post: post, postEveryone, and

postFriends, which will add a new post to the social network with a particular visibility

setting of the new item. The post event adds the new item to the network, sets the visibility

19

Figure 3.13: getProfileFriends and

getProfileEveryone events

We also added an event to return data that belong to friends of a given user:

getConnectionsData (Figure 3.14). We will use this method to create a newsfeed page,

which will display the content posted by the user’s connections that is visible to the user.

Figure 3.14: getConnectionsData event

The event getConnectionsData returns all data of the user’s connections that is

visible to the user. In act1, we use the domain and range restriction on the owner relation to

return the user’s connections’ data that is visible to the user. That is, the data with Friends

and Everyone visibility setting.

25

Furthermore, enumerated and carrier sets differ in the access modifier. Since

enumerated sets in the context are constants and the set cannot take on any other value other

than specified in the Event-B axiom, we wanted to declare the add method generated for the

enumerated types private instead of public as in the case of carrier sets. If the method was

declared public, the client code would be able to add elements to enumerated sets and this

would change the constant property of the set.

3.3.2. User Interface Components

We also extended EventB2SQL to generate HTML user interface components. One of

the useful components to be generated automatically was a selector for elements of carrier

sets such as USER, DATA, or VISIBILITY. A selector for the USER carrier set was used in

creating connections between users (Section 3.5.5). A user can select another user in the

network by selecting them from a dropdown on the website (Figure 3.33). A selector for the

Figure 3.19: PHP code generated to return selector for

VISIBILITY enumerated set

VISIBILITY carrier set was generated to change the privacy settings for the user’s

content (Figure 3.32). Another useful component to generate was radio buttons for

enumerated sets, in this case for visibility levels OnlyMe, Friends, and Everyone. We defined

34

getUserData event. If a user chooses to view his profile as Friends, all the content with

visibility setting Friends and Everyone will be shown. If a user chooses to view his profile as

Figure 3.29: View My Profile As...

 Everyone, only the content set to Everyone visibility level will be displayed. The data

will be loaded by calling functions getProfileFriends() and

getProfileEveryone() that were generated through the EventB2SQL translation from

the getProfileFriends and getProfileEveryone events (Figure 3.13). This feature of

the social network is very significant in our research project because it represents the

consistency in the Event-B model between the visibility of the data and the privacy setting of

that data, and thus demonstrates the main goal of the research.

Figure 3.30: View Profile As Friends

35

We have added two posts for our new user John Smith: “Hi Friends! I’m feeling good

today!” with the visibility level set to Friends, and “Hello World! It’s a beautiful world!”

with the visibility level set to Everyone. If we now view profile as Friends like in Figure

3.30, both posts will be shown, which is consistent to what we wanted to achieve. Observe

that John’s e-mail is not shown because it is currently set to OnlyMe. On the other hand, if

we view his profile as Everyone, we can only see the data set to Everyone visibility level

(Figure 3.31).

Figure 3.31: View Profile As Everyone

3.5.4. Change Your Visibility Settings

Figure 3.32: Settings page to change your visibility settings

36

Users can change the visibility settings of postings in the Settings tab. This page

displays all user’s content with the current visibility level, and selectors with visibility

options (Figure 3.32). We iterated over the set of data that belong to the user and for each

item we created its own HTML form to change its visibility setting. The selectors for

visibility levels were also generated by calling a function

generateSelectionVISIBILITY() that was created during the Event-B model

translation to PHP (Section 3.3.2). Once we select a new visibility setting for an item and

click on the “Set” button, the visibility of that data content will be updated in the social

network.

3.5.5. Making Connections in the Social Network

Figure 3.33: Search Network page - adding connections

The Search Network tab enables users to connect with other users in the social

network. It will have a selector with all existing users in the network and once we select a

user, we can connect with that user by clicking the “Connect” button (Figure 3.33). Once the

button is clicked, the new connection between the current user and Caroline Nguyen will be

added to the network. The user now will be directed to My Friends tab where he will be able

38

Chapter 4

 CHALLENGES

One of the main challenges of the project was proving the consistency of the invariant

related to the FriendsOfFriends visibility option. We were unable to prove the generated

proof obligation for the createConnection event involving the FriendsOfFriends

visibility invariant, and thus decided to remove the option from the model.

Figure 4.1: Flow chart of FriendsOfFriends visibility relations

while creating a connection

When creating a connection, we need to set the visibility relations appropriately.

Figure 4.1 shows a visual representation of the changes that should be made to the model for

data with FriendsOfFriends visibility level for user u1. It is not sufficient to set all data of u1

with visibility level FriendsOfFriends to be visible to u2 and his friends, and vice versa. We

also need to cover the cases involving the data with FriendsOfFriends visibility level that

belong to the existing friends of the users involved in the new connection. This could easily

be defined in the model (Figure 4.2). Lines 80 and 81 of Figure 4.2 set each of the two users’

data with FriendsOfFriends setting to be visible to their new connection and the new

42

Chapter 6

 FUTURE WORK AND CONCLUSION

A significant part of this case study was building an Event-B model of a social

network and discharging the proof obligations. EventB2SQL generated a majority of useful

code from the Event-B model that was used to build the PHP application of a social network

that resembles the real-world Facebook application. The social network application has in

total 3597 lines of code where 70% was generated by EventB2SQL and 30% was added by

hand. While a large amount of time was spent on FriendsOfFriends visibility level, we still

have not been able to prove this part of the model. More research on the interactive provers,

proving tactics, and understanding of the invariant is needed to discharge the proof

obligations for this particular visibility setting option.

Our current Event-B model does not consider e-mail address as a separate variable

but simply as a data item. To check whether a user already exists in the network, we iterate

over the entire set of users and check whether the e-mail already belongs to an existing user.

However, this does not seem to be an efficient approach and we would like to change our

model to include e-mail address as a function from users to strings. Then we would be able to

define an event which would check if a given e-mail address already exists.

We defined the dataVisible variable in the Event-B model to test the consistency in

the model. That is, we wanted to show that the selected data is visible to the appropriate

group of users in the social network. However, it does not seem practical to store that

information in a real social network. Therefore, we would like to extend our research in this

area and find other possible ways of modeling the problem.

43

We also wish to extend the EventB2SQL further to generate PHP code for returning

selectors and/or radio buttons for subsets of the carrier sets. A PHP function would take a

subset of a carrier set as a parameter and generate the user interface components for those

elements in the subset. This would be useful, for example, in the Search Network. Currently,

if a user wants to make a new connection, he can choose another user in the network from a

selector that includes all users in the social network. It would be more reasonable to display

only the set of users that are not already connected to the user. This idea could be used in any

situation where we want to select from some specified subset of the elements of a carrier set.

Another area for future work is enhancement of the basic functionalities of the social

network. Since our version of the social network is a proof of concept of representing basic

privacy policies, there are still areas for improvement. First of them is adding connections

between users to the network. While creating a connection, we would like to send a request

to another user instead of automatically adding a connection without the permission from

both users. We would also add an ability to remove a connection.

Even though the model includes only three visibility levels: OnlyMe, Friends, and

Everyone, the formally verified social network application resembles the real-world

Facebook application, which was one of the main goals of our research. There are many

areas of the research that we would like to improve, but most of our research goal was

achieved. By developing a formally verified software, we confirmed Event-B’s ability to

verify the consistency of privacy policies, and EventB2SQL’s ability to generate useful code

for a social networking application.

44

References

Abrial, J. (2010). Modeling in Event-B: System and Software Design. New York, NY:

Cambridge University Press.

Abrial, J., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., & Voisin, L. (2010). Rodin: An

open toolset for modelling and reasoning in Event-B. International Journal on

Software Tools for Technology Transfer, 12(1433-2779), 447-466.

Catano, N., Rivera, V., Rueda, C., & Wahls, T. (2015). Code Generation for Event-B.

International Journal on Software Tools for Technology Transfer, 1-22.

Catano, N., & Rivera V. (2014). Translating Event-B to JML-Specified Java programs. 29th

ACM Symposium on Applied Computing, Software Verification and Testing track

(SAC-SVT).

Catano, N., & Rueda, C. (2010). Matelas: A Predicate Calculus Common Formal Definition

for Social Networking. Proceedings of ABZ 2010, 5977, 259-272.

Catano, N., & Wahls, T. (2015). A Case Study on Code Generation of an ERP System from

Event-B. Proceedings of the 2015 IEEE International Conference on Software

Quality, Reliability and Security (QRS 2015). Vancouver, British Columbia. August

3 - 5, 2015. 183 - 188.

Gmehlich, R., Grau, K., Hallerstede, S., Leuschel, M., Losch, F., Plagge, D. (2011). On

fitting a formal method into practice. In: Qin, S., Qiu, Z. (eds.) Formal Methods and

Software Engineering, Lecture Notes in Computer Science, vol. 6991, pp. 195--210.

Springer Berlin Heidelberg.

45

Jacquot, J., Souquieres, J, & Yang, F. (2013). JeB: Safe Simulation of Event-B Models in

JavaScript. 2013 20th Asia-Pacific Software Engineering Conference (APSEC),

1(1530-1362), 571-576.

Laleau, R., & Mammar, A. (2006). From a B Formal Specification to an Executable Code:

Application to the Relational Database Domain. Inf. Softw. Technol., 48(0950-5849),

253-279.

Langley Formal Methods Program • César Muñoz • Welcome. (n.d.). Retrieved April 20,

2016, from http://shemesh.larc.nasa.gov/fm/fm-what.html

Lecomte, T. (n.d.). Safe and Reliable Metro Platform Screen Doors Control/Command

Systems. Lecture Notes in Computer Science FM 2008: Formal Methods, 430-434.

Mery, D. & Singh, N.K. (2011). Automatic code generation from Event-B models. In

Proceedings of the Second Symposium on Information and Communication

Technology, SoICT. ACM.

Pardo, R., & Schneider, G. (2014). A Formal Privacy Policy Framework for Social

Networks. Proceedings of the 12th International Conference on Software Engineering

and Formal Methods, 8702, lecture notes in computer science, 378-392.

Wahls, T. (2015). MedicationChecker: Development of a Formally Verified Android

Application with EventB2SQL. In preparation.

Wahlst, T. (2016). Formal Semantics and Soundness of a Translation from Event-B Actions

to SQL Statements. In preparation.

Wahls, T., & Wang, Q. (2014). Translating Event-B Machines to Database Applications. In

Software Engineering and Formal methods: 12th International Conference,

46

Giannakopoulou, D. & Salaun, G., SEFM 2014, Grenoble, France, September 1-5,

2014. Proceedings (Vol. 8702, pp. 265-270).

